

## **ORIGIN OF STANDARDIZED SPRAY DROPLET SIZE CATEGORIES**

- 1985 -- British Crop Protection Council (BCPC)
  - Droplet size classifications, primarily designed to enhance efficacy.
     Uses the term SPRAY QUALITY for droplet size categories.
- 2000 -- ASAE Standard S572
  - Droplet size classifications, primarily designed to control spray drift.
  - Uses the term DROPLET SPECTRA CLASSIFICATION for droplet size categories.

DROPLET SPECTRA CLASSIFICATION IS SPECIFIC TERMINOLOGY THAT WILL BE **USED ON PRODUCT LABELS AND IS RELATED TO VOLUME MEDIAN DIAMETER** FROM AN ASAE REFERENCE NOZZLE SET WITH A LASER REFERENCE INSTRUMENT\*

> < 182µm ■ Very Fine (VF) ■ Fine (F) 183-280µm 281-429µm ■ Medium (M) ■ Coarse (C) 430-531µm ■ Very Coarse (VC) 532-655µm

■ Extremely Coarse (XC) >656µm USDA ARS College Station, TX





# WHAT DO THESE SIZES MEAN IN RELATIVE TERMS?

■ Very Fine (VF) human hair ■ Fine (F) sewing thread tooth brush bristle ■ Medium (M) ■ Coarse (C) staple ■ Very Coarse (VC) paper clip

■ Extremely Coarse (XC) #2 pencil lead





#### THE LABEL IS THE LAW

#### Directions for use

It is a violation of federal law to use this product in a manner inconsistent with its labeling.

## WHAT ARE WE ACCUSTOMED TO **SEEING ON LABELS?**

- Use nozzle types and arrangements that will provide optimum spray distribution and maximum coverage . . . Classic, 1998
- The best drift management strategy is to apply the largest droplets that provide sufficient coverage and control. Hyvar X-L, 1998 & Furadan 4F, 1999
- -- general statements and precautions --

## WHAT NEW TERMS ARE WE **SEEING ON LABELS?**

- $\dots$  desired droplet size (100 200  $\mu m) \dots$  Lock-On (chlorpyrifos), 2001 (very fine -- fine)
- apply in spray droplet size of 200-300 µm Tracer (spinosad), 2001 (medium)
- ... use coarse spray droplets ... (430-530 $\mu$ m) Reclaim (clopyralid), 2001

How do applicators comply with the law when label language is this specific?

## **PRACTICAL SOURCES FOR DROPLET** SPECTRA CLASSIFICATION **INFORMATION**

- Technical literature
- Nozzle manufacturers literature (ground)
- Spray Drift Task Force database
  - Ground systems
  - Orchard airblast systems
  - · Aerial systems

    - AgDRIFT
- (aerial)
- USDA aerial nozzle models

#### **USDA AERIAL NOZZLE MODELS**

## **Applicability and Limitations:**

- Specific nozzle class
- Account for airspeed/air shear
- Account for major influence of spray mix properties
- Models currently available
   Eight fixed-wing nozzle models
   Eight helicopter nozzle models

| NOZZLE USE IN AERIAL APPLICATION Nozzle Composite Utilization, % |            |            |                         |
|------------------------------------------------------------------|------------|------------|-------------------------|
|                                                                  | Fixed-wing | Rotary-win | g                       |
| CP-03                                                            | 42 *       | 30 *       |                         |
| CP Str. Stream                                                   | 25 *       | 8 †        | Source:                 |
| Disc Orif. Str. Stre                                             | am 8 *     | 15 *       | USDA                    |
| Flat Fan                                                         | 5 **       | 2 †**      | 100000                  |
| Disc-Core                                                        | 5 **       | 12 *       |                         |
| Lund Str. Stream                                                 | 4 *        | 2          | VAAA                    |
| Accu-Flo                                                         | 4          | 16 **      | Survey 1999             |
| Micronair                                                        | 3          | 5          | Survey 1777             |
| Raindrop RD                                                      | 2          | 8 *        |                         |
| Flood                                                            | 2          |            | Nozzle Models Available |
| TVB                                                              |            | 2          |                         |

## **AERIAL NOZZLE MODEL DEVELOPMENT Objective:**

■ Develop a readily usable tool for aerial applicators to predict Droplet Spectra Classification from predominantly used nozzles in both fixed-wing and rotary-wing segments of the aerial application industry

## AERIAL NOZZLE MODEL DEVELOPMENT

## **Fixed-Wing Study Equipment:**

- Wind tunnel test facility
  - Nozzle angle, general: 0° -90°, low drift: 0° -20°
  - Nozzle size, range based on survey
  - · Airspeed, 100 to 160 mph
  - Pressure, 20 to 60 psi
  - PMS laser probe

#### **AERIAL NOZZLE MODEL DEVELOPMENT**

#### **Helicopter Study Equipment:**

- Wind tunnel test facility
  - Nozzle angle, general: 0° -90°, low drift: 0° -20°
  - Nozzle size, range based on survey
  - · Airspeed, 30 to 100 mph
  - Pressure, 20 to 60 psi
  - PMS laser probe









## **AERIAL NOZZLE MODEL DEVELOPMENT**

## **Study Equipment:**

#### Examples --

- Disc Orifice 46 Core Nozzle
  - Orifice Sizes: 2 10
  - Nozzle Angles: 0° -90°
- CP-03 Nozzle
  - Nozzle axis parallel with airstream
  - Orifice Sizes: 0.061 0.171
  - Nozzle Deflector Angles: 30°, 55°, 90°

## **AERIAL NOZZLE MODEL DEVELOPMENT**

## **Spray Mix:**

- Tap water
- 0.25% v/v Triton X-100

## **AERIAL NOZZLE MODEL DEVELOPMENT**

#### **Procedure:**

- **Experimental Design** 
  - 27 Different Combinations of

    - Orifice Size, or Nozzle Size
       Nozzle Angle, or Deflector Angle
    - Spray PressureAirspeed
  - Each combination scanned in 4 passes with laser spectrometer in wind tunnel and that process was replicated 3 times for each of the 27 combinations for each nozzle

#### **AERIAL NOZZLE MODEL DEVELOPMENT**

#### **Procedure:**

- PMS laser spectrometer data selection
  - Volume median diameter, D<sub>V0.5</sub>
  - Relative span, RS, measure of range of mid 80% of spray spectrum
  - % Spray volume in droplets < 100 µm diameter
  - % Spray volume in droplets < 200 µm diameter
  - Droplet Spectra Classification (Computed classification based on  $D_{0.5}$  from nozzle under test, reference nozzle dataset, and ASAE S572)

#### **AERIAL NOZZLE MODEL DEVELOPMENT**

#### **Data Analysis:**

$$\begin{split} Y &= A + BX_1 + CX_2 + DX_3 + EX_4 \\ &+ FX_1^2 + GX_2X_1 + HX_2^2 + IX_3X_1 \\ &+ JX_3X_2 + KX_3^2 + LX_4X_1 + MX_4X_2 \\ &+ NX_4X_3 + OX_4^2 \end{split}$$

## 







# AERIAL NOZZLE MODELS Summary:

- Use of these aerial nozzle models will permit users of aerial nozzles to be responsible stewards in the use of crop protection materials
- Regulatory decisions on details of use of these models will facilitate compliance with label requirements for aerial application with a specific spray droplet spectra classification

# AERIAL NOZZLE MODELS Availability:

- Diskettes with spreadsheet models will be provided based on request
- Interactive models are posted on USDA ARS APMRU Internet homepage
- USDA will publish an Aerial Applicators Spray Nozzle Handbook based on the models
- NAAA has committed to purchase copies of the Handbook for distribution to NAAA members, additional copies will be available from GPO, NTIS

#### AERIAL NOZZLE MODELS Availability:

USDA ARS APMRU Internet homepage for access to aerial spray nozzle models:

http://apmru.usda.gov Downloads

